Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP

نویسندگان

  • P S Kim
  • D Bole
  • P Arvan
چکیده

Because of its unusual length, nascent thyroglobulin (Tg) requires a long time after translocation into the endoplasmic reticulum (ER) to assume its mature tertiary structure. Thus, Tg is an ideal molecule for the study of protein folding and export from the ER, and is an excellent potential substrate for molecular chaperones. During the first 15 min after biosynthesis, Tg is found in transient aggregates with and without interchain disulfide bonds, which precede the formation of free monomers (and ultimately dimers) within the ER. By immunoprecipitation, newly synthesized Tg was associated with the binding protein (BiP); association was maximal at the earliest chase times. Much of the Tg released from BiP by the addition of Mg-ATP was found in aggregates containing interchain disulfide bonds; other BiP-associated Tg represented non-covalent aggregates and unfolded free monomers. Importantly, the immediate precursor to Tg dimer was a compact monomer which did not associate with BiP. The average stoichiometry of BiP/Tg interaction involved nearly 10 BiP molecules per Tg molecule. Cycloheximide was used to reduced the ER concentration of Tg relative to chaperones, with subsequent removal of the drug in order to rapidly restore Tg synthesis. After this treatment, nascent Tg aggregates were no longer detectable. The data suggest a model of folding of exportable proteins in which nascent polypeptides immediately upon translocation into the ER interact with BiP. Early interaction with BiP may help in presenting nascent polypeptides to other helper molecules that catalyze folding, thereby preventing aggregation or driving aggregate dissolution in the ER.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum

Before secretion, newly synthesized thyroglobulin (Tg) folds via a series of intermediates: disulfide-linked aggregates and unfolded monomers-->folded monomers-->dimers. Immediately after synthesis, very little Tg associated with calnexin (a membrane-bound molecular chaperone in the ER), while a larger fraction bound BiP (a lumenal ER chaperone); dissociation from these chaperones showed superf...

متن کامل

Enhanced binding to the molecular chaperone BiP slows thyroglobulin export from the endoplasmic reticulum.

To examine how binding of BiP (a molecular chaperone of the hsp70 family that resides in the endoplasmic reticulum) influences the conformational maturation of thyroglobulin (Tg, the precursor for thyroid hormone synthesis), we have developed a system of recombinant Tg stably expressed in wild-type Chinese hamster ovary (CHO) cells and CHO-B cells genetically manipulated for selectively increas...

متن کامل

Computational Modeling of Chaperone Interactions in the Endoplasmic Reticulum of Saccharomyces Cerevisiae

In eukaryotes, the endoplasmic reticulum (ER) acts as a protein gatekeeper for protein folding, maturation, and transport. Molecular chaperones, of the Hsp70 family of proteins, participate in assisting these processes and are essential to cellular function and survival. BiP is the resident chaperone in the ER of Sacchromyces cerevisiae. In this study we have created two deterministic models to...

متن کامل

Spatial localisation of chaperone distribution in the endoplasmic reticulum of yeast.

In eukaryotes, the endoplasmic reticulum (ER) serves as the first membrane-enclosed organelle in the secretory pathway, with functions including protein folding, maturation and transport. Molecular chaperones, of the Hsp70 family of proteins, participate in assisting these processes and are essential to cellular function and survival. BiP is a resident Hsp70 chaperone in the ER of Saccharomyces...

متن کامل

The cotranslational maturation of the type I membrane glycoprotein tyrosinase: the heat shock protein 70 system hands off to the lectin-based chaperone system.

The maturation of eukaryotic secretory cargo initiates cotranslationally and cotranslocationally as the polypeptide chain emerges into the endoplasmic reticulum lumen. Here, we characterized the cotranslational maturation pathway for the human type I membrane glycoprotein tyrosinase. To recapitulate the cotranslational events, including glycosylation, signal sequence cleavage, chaperone binding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 118  شماره 

صفحات  -

تاریخ انتشار 1992